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Abstract   
 
The shortage of static and dynamic data in areas newly 
acquired or in the early stages of production and 
production development makes extremely difficult to 
understand the spatial distribution of the different scales of 
geological heterogeneities. This often impacts in obtaining 
realistic flow scenarios. To address the data scarcity for 
reservoir modelling and characterization, a commonly 
used approach is the identification and study of analogous 
reservoirs. This can bring many different data which permit 
create important quantitative criteria to modelling a 
production zone. Due to the large volume and types of 
information, the task of recognizing pattern in these data 
mountain can be overwhelming. This is particularly true if 
pre-stack seismic data are considered. To tackle this 
problem, different transfer learning strategies based on 
artificial intelligence can be used. Recently, it has been 
proposed to combine deep autoencoders with clustering 
algorithms to extract seismic facies from pre-stack seismic 
data. In this paper, we extend the methodology to consider 
the possibility of using two different input data: the 
analogous and the target.  These two data can be used in 
the training of a deep convolutional autoencoder or in the 
clustering algorithm. The proposed transfer learning 
strategies are applied to a Brazilian siliciclastic reservoir, 
showing an improvement in the recognition of the 
depositional architectural elements and understanding of 
rock and fluid quality based on other analogous reservoirs. 

Introduction 
 
The quick and at low cost construction of reliable 
geological models of an oil field is a challenge for newly 
acquired areas or areas in the initial phase of production 
and development of production – DP&P. This is one of the 
most important steps for understanding the hydrodynamic 
behavior of the reservoir and one of the main sources of 
uncertainties. However, the shortage of static and dynamic 
data in most of these areas makes it extremely difficult to 
understand the spatial distribution of the different scales of 
geological heterogeneities and, consequently, influence in 
obtaining realistic flow scenarios.  
 
To address the data scarcity for reservoir modelling and 
characterization, a commonly used approach is the 

identification and study of analogous reservoirs. The 
understanding of the occurrence of geological 
heterogeneities, from the study of analogous areas, and 
the patterns variation in reservoir scale, can bring 
important quantitative criteria for the parameterization and 
spatial distribution of the main geological features within a 
production zone. Generally, this approach enhances the 
understand of how certain properties (eg. porosity, 
permeabilities, mechanical properties, etc.) are related, 
integrating different data scales, to improve the 
assessment of probabilistic uncertainty scenarios. 
 
Petrobras S.A. has been acquiring and producing literally 
a mountain of data in the last 70 years of Exploration and 
Production campaigns - E&P sector. There are data from 
different scales, supports and from different physical 
measures, such as log data (gamma rays, neutron density, 
sonic dipole, resistivities, acoustic and resistive images), 
test data (RFTs, mini-TIs, DSTs, others.), seismic data (4D 
seismic, VSP, others.), cores, analogues outcrops 3D 
models, geological models, simulation models, others. 
Digital solutions and automated frameworks both 
integrated to a large database of reservoirs and outcrops 
analogous to the modeled reservoirs is one of the main 
technological challenges in the conception of new projects. 
This will promote break down the silos and greater agility 
in build and condition new models. 
 
Due to the large volume and types of information, the task 
of recognizing pattern in these data mountain can be 
overwhelming. To tackle this problem, different transfer 
learning strategies based on artificial intelligence are being 
proposed. Transfer learning is a neural network approach 
in which knowledge obtained with a problem is transferred 
to a different but related problem (Yosinski, 2014). In deep 
learning the technique can be used to learn the features of 
a huge amount of data avoiding overfitting. In the first step, 
the model is initialized and trained with one set of images. 
Then, the network with pre-trained filters continues to be 
trained with a second set of images, for which it is desired 
to recognize the main patterns. The network layers have 
different levels of specialization. The key point is the 
generalization ability of the convolutional network. But as 
found by (Yosinski, 2014), initializing with transferred 
features can improve generalization performance even 
after substantial fine-tuning on a new task. 

Reservoir transfer learning studies must consider that 
methodologies to build a reservoir model integrate several 
information sources. The information from the wells, 
although more precise, is punctual and does not reflect the 
behavior of the field as a whole. In this way, the spatial 
identification of architectural and structural elements is 
dependent on the analysis and good representation of the 
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spatial distribution of the main characteristics of the 
seismic signal. 

In the stacked seismic data, the signal amplitude is a mean 
of the contributions of the amplitudes obtained for different 
source-receiver offsets. This vector information does not 
allow to extract all the richness of details that exists in the 
data, different from the matrix of traces of the pre-stacked 
seismic data, which carries the information of the reflection 
coefficients as a function of the angles they were 
illuminated. Quantitative seismic interpretation based on 
pre-stack seismic data, such as amplitude variation with 
offset (AVO) analysis, allowing the extraction of geological 
features with greater accuracy and resolution, as lithology 
and fluid in the porous media (Simm and Bacon, 2014). 

 (Qian et al., 2018) proposed to combine deep 
autoencoders with clustering algorithms to extract seismic 
facies. Deep Learning appears as a non-linear statistical 
approach for patterns recognition of the elastic information 
within the common-depth-point (CDP) gathers. The Deep 
Convolutional Autoencoder (DCAE) is used to learn 
efficient data encodings, reducing the data dimensionality. 
The latent features generated by the DCAE encoder are 
used as input to the K-means algorithm.  

Recently, (Silvany et al., 2020, Silvany et al., 2021) showed 
how to apply the (Qian et al, 218) methodology to the multi-
azimuthal pre-stack data and frequency-gathers extracted 
from the post-stack data, using different input channels to 
accommodate each azimuth. 

Here, we extend the methodology to consider the 
possibility of using transfer learning. In this case, the 
algorithm receives two different input data: the target and 
the analogous data. We propose two strategies to deal with 
them. In the first one the analogous data is only used to 
pre-train the DCAE network. In the second strategy, the 
analogous data is used on both the DCAE training and the 
K-means algorithm.  

In the next section we present the methodology to extract 
seismic facies using DCAE and K-means and the two 
proposed transfer learning strategies. Also, we use 
Student’s t-distribution to estimate the probability for each 
facies (Silvany et al., 2021). After, we discuss the results 
of the methodology of learning seismic features in analogs 
reservoirs and predict different seismic facies with fine-
tuned features or frozen features approaches. The results 
are interpreted based on the lithology and fluid 
characteristics of analogues fields in a real siliciclastic play 
in Sergipe-Alagoas Basin, eastern Brazilian margin.  

Method 

The input data are the region of interest (for example, the 
window around a horizon), the pre-stack CDP gathers, and 
the frequency-gathers. For each point of the region of 
interest, one time-offset and one time-frequency panel are 
extracted from the input gathers. The panels are 
parametrized by the number of samples, the number of 
offsets and the number of frequencies to be considered. 
Also, as we are able to consider multi-azimuthal data, we 
can have one time-offset panel and one time-frequency 
panel for each azimuth (Silvany et al., 2021). The goal is 
the identification of a certain number k of facies present in 
the data.  

In the context of the present work, the space X has the 
dimension of all possible gray images. However, the actual 
gathers images used are only a small subset of X. Work 
with a high dimension space involves problems known as 
“curse of dimensionality” (Bellman, 1961). So, assuming 
that the real gathers images form a manifold embedded in 
X, we will first transform the data with a nonlinear mapping 
fθ : X → Z, where θ are learnable parameters and Z is the 
latent feature space. The dimensionality of Z is smaller 
than the X. The set of transformed points {zi} will be the 
input to the clustering algorithm. Thus, the method has two 
steps: (1) the fθ building and (2) the clustering method 
application.  

To parametrize fθ, it will be used a Deep Convolutional 
Autoencoder (DCAE). An autoencoder (LeCun, 1987) is a 
type of artificial neural network used to learn efficient data 
encodings. DCAE is composed by two subnets: the 
encoder, which generates the code (latent feature space) 
for each input Xi, and a decoder, which receives the code 

and makes the reconstruction iX̂ , as similar as possible to 

the original input. The training of the DCAE is done 
minimizing the reconstruction error. As it does not depend 
on labelled data, it is an unsupervised learning method.  

The encoder is composed by a sequence of convolutional 
and max pooling layers. A convolutional layer (LeCun, 
1989) has a set of filters, all of them with the same size. As 
the filter size is less than the input size, the weights that 
define the filter are applied over the input as a convolution. 
This permits to identify patterns in the input image in a way 
that is invariant with translation. The max pooling layer 
down samples the input. Typically, it runs a 2x2 mask over 
the input, taking the maximum value and shifting with stride 
of 2 along both directions, reducing the output size. This 
implementation of an encoder can be seen as a pyramid 
filter extracting features with different levels of abstraction 
(or scale).  

The decoder, on the other hand, implements an inverted 
pyramid: it is composed by a sequence of upsampling and 
convolution layers. Upsampling layer typically doubles the 
size of the image, assigning to the output pixel the nearest 
pixel of the input.  

DCAE is implemented using the denoising autoencoders 
(Vincent et al, 2008) strategy: it learns to approximate the 
original input by training on the input vectors with noises.  
The DCAE is designed to reconstruct the original data from 
the corrupted version of the original images, the process of 
which forces the hidden layer to discover more robust 
features and prevents overfitting noises. Figure 1 shows 
schematically the structure of DCAE. 

 

Figure 1 - The structure of DCAE. 

Once trained the DCAE network (the first step of the 
method), we use the Encoder to make the transformation 
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fθ : X → Z for all time-offsets and time-frequency panels. 
Observe that the input for the Encoder are the same data 
used in the DCAE training, but now without noise. The 
code set is submitted to a clustering algorithm, obtaining a 
cluster identification (a number) for each input element.  

In order to evaluate the probability of each point to belong 
to each cluster, we adopt the Student t-distribution, 
following the classical work of (van der Maaten & Hinton, 
2008). In equation 6, qij is the probability of the point i to 
belong to the cluster j (zi is the code for the i-th point and 
µj is the centroid of the j-th cluster. 

𝑞௜௝ =
൫ଵା‖௭௜ିఓ௝‖మ൯

షభ

∑ (ଵା‖௭௜ିఓ௝‖మ)షభೕ
       (6) 

Figure 2 describes visually this second step. 

 

 
Figure 2 - The second step of the method. 

 
 
In this paper, we extend the methodology to consider the 
possibility of using transfer learning. In this case, the 
algorithm receives two different input data: the target and 
the analogous data. Here we propose two strategies. 
 
In the first one the analogous data is used to pre-train the 
DCAE; then, the weights and bias obtained are used for 
initializing the network which is, now, trained with the target 
data. The clustering algorithm is applied to the target 
feature vectors (extracted from the DCAE encoder).  
With this initialization, we hope to induce the encoder to 
retain some features learned from the analogous data (with 
this purpose, in the final training, we use a learning rate 
value lower than the that used for pre-training). We call this 
as fine-tuning strategy. 
 
In the second strategy, the DCAE is trained with the 
analogous data. The obtained encoder is then used to 
extract two sets of feature vectors: one from the analogous 
data and one from the target data.  The K-means is 
computed over the analogous feature vectors. To obtain 
the clusters for the target data its feature vectors are 
classified according to the distance from the centroids 
obtained previously. Observe that, in this case, there is a 
direct correspondence between the target facies and the 
analogous facies. However, with this autoencoder, there  is 

a risk of deteriorating the target panels encoding and 
decoding. We call this strategy as frozen strategy. 
 
 
Silicicalstic Reservoir and Analogues Case Study 
 

The geological province is located in the deep-water region 
of the Sergipe-Alagoas basin, northeast continental 
Brazilian margin. It is classified as a divergent margin 
tectonic environment. The area has hydrocarbon reserves 
related to siliciclastic turbidite deposits from the Calumbi 
Formation, that corresponds to a predominantly pelitic 
sequence, with turbidites embedded in siltstones, shales 
and marls. The conceptual depositional model of these 
reservoirs is based on changes in the depositional energy 
gradient in the physiographic paleoenvironment of slope. 
The major trapping mechanism involved in the region is 
stratigraphic, with the top and lateral seals provided by 
overlying shale. Characterizing these seismic facies is not 
a straightforward process, involving uncertainties that shall 
impact, for instance, in non-optimal well locations of the 
proposed drainage plan. The Figure 3(A), (B) and (C) 
illustrates a VPVS anomaly map, seismic amplitude dip 
section and VPVS dip section crossing the wells 1 and 2 of 
an analogue reservoir.  

 
Figure 3 (a) VPVS anomaly map of an analogue reservoir; 
(b) seismic amplitude dip section crossing the wells 1 and 
2; (c) VPVS attribute dip section crossing the wells 1 and 
2. 

Petrophysics and geology analysis in the existing wells 
have shown that these reservoirs are mostly composed of 
conglomerate, sandstone, shaly sand and laminate facies, 
based on core and well-log information. The turbidite 
reservoir has low to medium porosity saturated by oil. 
Although this petrophysical property suffers reduction due 
to diagenetic processes, pore-filling clay deposition, and 



Seismic data pattern recognition based on analogous reservoirs via transfer learning.  
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Seventeenth International Congress of the Brazilian Geophysical Society 

4

reservoir compaction. The compressional-to-shear velocity 
ratio (VP/VS) generally increases with the clay content in a 
quartz-rich turbidities sedimentary rock. So, the elastic 
property can be used as an indicator of reservoir quality 
(Figure 4). Due to these effects, we can observe AVO 
answer in the commons-depth-points gathers on the clastic 
reservoir with dominance of class III anomalies. 

The project database is composed by a Broadband 
narrow-azimuth seismic survey with sail-line head of 
N119o. The seismic processing is a PSDM Kirchhoff. We 
use the pre-stack CDP gathers N119o to extract the codes 
which are submitted to a clustering algorithm. 

 

 
 
Figure 4 Crossplot of IP vs. VPVS colored by deposicional 
facies. 
 
The reference horizons to select the data window were the 
top of the target and analogous reservoirs. The chosen 
interval comprised 100 meters below it. The DCAE was 
trained with images from the analogue reservoirs, each 
one with 20 samples in depth and 60 offsets. The feature 
space generated was a vector space with 32 components 
(with a dimensionality reduction from 1200 to 32). In the 
first strategy (fine-tuning), the weights and bias obtained 
are used for initializing the network which is, now, trained 
with the target data. The clustering algorithm is applied to 
the target feature vectors (extracted from the DCAE 
encoder). In the second strategy (frozen), the encoder 
obtained from the analogous is used to extract two sets of 
feature vectors: one from the analogous data and one from 
the target data.  The K-means is computed over the 
analogous feature vectors. To obtain the clusters for the 
target data, its feature vectors are classified according to 
the distance from the previously obtained centroids.  
 
Figure 5 shows how well works the DCAE in the different 
situations to which it is submitted.  Figure 5(B) shows ten 
analogous panels encoded and decoded by a DCAE 
trained with analogous data. Figure 5(C) shows ten target 
panels encoded and decoded by a DCAE trained with 
target data. Figure 5(D) shows ten target panels encoded 
and decoded by a fine-tuning DCAE. Figure 5(E) shows ten 
target panels encoded and decoded by a frozen DCAE. 
Observe that the reconstructed images are a smoothed 
version of the input images. The main features are 
preserved in all the situations, even in the frozen DCAE. 
 

 
Figure 5 (A) The structure of DCAE; (B) ten analogous 
panels encoded and decoded by a DCAE trained with 
analogous data; (C) ten target panels encoded and 
decoded by a DCAE trained with target data; (D) ten target 
panels encoded and decoded by a fine-tuning DCAE; (E) 
ten target panels encoded and decoded by a frozen DCAE. 
 
The Figure 6 (A) and (B) show the obtained seismic facies 
with DCAE applied in a single azimuth pre-stack CDP 
gathers (N119o), and the maximum probabilities maps 
associated for a specific analogue reservoir, respectively. 
The deposition of the analogue field occurred by turbidite 
flows with NW-SE direction. These flows filled minibasins 
in the slope environment, building systems of lobes and 
channels amalgamated. In the early stages of deposition, 
the region was filled by lower energy turbidite flows, with 
deposition in local depressions that compose thin 
sandstone intervals. In the final stages of deposition, with 
the same depositional direction, occurred turbidite flows of 
higher energy that compose thicker deposits (~80 meters).  
The lower energy lithofacies are described as medium to 
fine sandstone and shaly sand. These are associated with 
the red color seismic facies area. The higher energy 
lithofacies are described as conglomerate lithofacies and 
are associated with the light and dark green seismic facies 
areas. The interval crossed by Well1 shows these 
characteristics, where conglomerates lithofacies were 
described. The E and W edges of the reservoir are 
described as erosive features of late depositional events, 
associated with the orange seismic facies areas. 
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Figure 6 (a) Six facies map obtained by DCAE+K-Means 
in a single pre-stack CDP gathers (N119o) for a specific 
analogue reservoir; (b) Maximum probabilities map 
associated with the seismic facies. 

 

The Figure 7 (A) shows the structural map and logs from 
Well 3. The Figure 7 (B) and (C) show the six facies and 
probability maps obtained by DCAE+K-means using only 
the target data. The Figure 7 (D) and (E) present the six 
facies and probability maps obtained using fine-tuning 
strategy. Finally, the Figure 7 (F) and (G) show the six 
facies and probability maps using frozen strategy. 

The six colors (target facies) in Figure 7 (F) have a direct 
correspondence to the facies identified in Figure 6 for the 
analogous data. Naturally, due to the fact that both DCAE 
and K-means have been trained only with the analogous 
data, the probabilities shown in Figure 7 (G) have lower 
values than the ones shown in the other probability maps 
(Figure 7 (C) and (E)). But observe that, while the yellow 
and cyan facies occur with low probabilities, the dark 
green, the light green, orange and the red facies have 
higher probability values. 

If we compare the fine-tuning results (Figure 7 (D)) with the 
frozen ones (Figure 7 (F)), we observe that the dark green, 
red and orange facies are almost equal in the two figures. 
On the other side, those three facies have a slightly 
different occurrence in Figure 7 (B) (obtained without 
transfer learning). This is more evident for the dark green 
facies. Those similarities between fine-tuning and frozen 
results and their differences for the results obtained with no 
transfer learning points to the effectiveness of the two 
methods. 

The deposition of the target reservoir also occurred by 
turbidite flows. The interval composes thick deposits in the 
central area (approximately ~ 70 to 80 meters). The mainly 
lithofacies described are conglomeratic sandstones at the 
reservoir base with fining up pattern to the top. In the early 
stages of deposition, the higher energy flows were 
controlled by a high morphological structure in the E-SE 
area of the field. The resulting sedimentary intervals are 
described in Wells 2 and 3 as conglomeratic lithofacies. In 
the late stage of deposition, occurred channeled deposits 
with less sedimentary inflow. There is predominance of 
medium to fine sandstone lithofacies, as described in Well 
1.  

One possible interpretation for these maps (Figure 7 (B), 
(D) and (F)) associates light green and dark green seismic 

facies with fill of a mini basins in a high energy phase of 
the depositional system, similar to the interpretation of 
analogous reservoirs. The seismic facie in red is related 
with channeled geometries corresponding to the 
environments of high-depositional slope. Subsequently, 
there is a late erosive event that isolates the area of Well 1 
from the main portion of the field.  This event is associated 
with the seismic facie in orange, similar the interpretation 
of the previous analogues reservoirs.  

 

 
 
Figure 7 (A) Structural map into Calumbi Formation and 
logs from Well 3; (B) Six facies map obtained by DCAE+K-
Means using only the target data; (C) Probability map 
associated with the first seismic facies map; (D) Six facies 
map obtained by DCAE+K-Means using fine-tuning 
strategy; (E) Probability map associated with the second 
seismic facies map; (F) Six facies map obtained by 
DCAE+K-Means using frozen strategy and (G) Probability 
map associated with the third seismic facies map. 
 
The classification of seismic facies in the target reservoir 
obtained by transfer learning enhanced the understanding 
of architectural elements of deep-water deposits and 
associated lithofacies (based on analogous areas tested 
by wells). Both strategies are consistent and address the 
data scarcity for the reservoir modelling and 
characterization. The probability maps obtained with 
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different strategies can also support the uncertainty 
analysis of the seismic facies recognition for the geological 
modelling. 
 
Conclusions 
 
The DCAE allows extracting features from pre-stack 
seismic data with a high level of abstraction and in a non-
linear way. Using those features as input to a clustering 
method it can be obtained seismic facies map using the 
richness of the pre-stack data. When compared with the 
classical approaches, the results show higher resolution in 
the recognition of the architectural elements of deep-water 
deposits and greater accuracy in the identification of zones 
with different depositional facies. Transfer learning 
enhanced the understanding of the tectonic-sedimentary 
patterns in the target reservoir based on analogous areas 
tested by wells. The strategies brought information of rock 
and fluid quality from other mature stages fields. The 
probability maps obtained with different strategies can also 
support the uncertainty analysis of the seismic facies 
recognition for the geological modelling. 
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